屠子恒博士,现为浙江财经大学金融数学专职教师。主要研究领域金融数据建模,量化模型。
电子邮箱:tuziheng@zufe.edu.cn
教育与工作经历:
2013年1月至今,浙江财经大学任教
2002.09-2006.07,浙江大学数学系学习,获学士学位
2006.09-2011.07 浙江大学应用数学系学习,获博士学位
2011.09-2013.07 上海高沃信息技术公司
2017.02-2018.02 日本北海道大学访问学者
主持参与科研项目:
[1] 2015.01-2017.12,国家自然科学基金青年基金,“一般阶非线性椭圆方程中若干问题的研究”(项目编号:11401521,22万,排名2/4)。
[2]2015.01-2017.12,国家自然科学基金青年基金,“具有分形结构的网络系统的同步转迁及其动力学机理研究”(项目编号:11402226,25万,排名5/6)。
[3]2019.01-2021.12,国家自然科学基金青年基金,“随机波动模型的高阶数值方法”(项目编号:11801504,25万,排名4/6)。
[4]2018.01-2020.12,浙江省自然科学基金一般项目,“含有分数阶算子的非线性椭圆方程半经典解的研究”(项目编号:LY18A010023,8万,排名2/4)。
论文、著作:
[1] Tu Ziheng, Lin Jiayun*, Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case, Differential and Integral Equations 32(5/6): 249-264, 2019, Q2
[2] Palmieri, Alessandro, Tu Ziheng*, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, Journal of Mathematical Analysis and Applications 470(1): 447-469, 2019, Q1
[3]Tu Ziheng, Lin Jiayun, et al., Strong -Solutions of the -Type Navier-Stokes Equation and the Regularizing-Decay Rate Estimation, Journal of Mathematical Fluid Mechanics 16(4): 669-689, 2014, Q4
[4]Xie Jian, Tu Ziheng*, A solution of the complex Ginzburg-Landau equation with a continuum of decay rates, Applied Mathematics-A Journal of Chinese Universities 29(3): 367-373, 2014, Q4
[5]Lu Xiaojun*, Tu Ziheng and Lv Xiaofen, On the exact controllability of hyperbolic magnetic Schrödinger equations, Nonlinear Analysis: Theory, Methods & Applications 109: 319-340, 2014, Q1
[6] Lu Xiaojun*, Tu Ziheng and Liu Xiaoxing, Counterexample of loss of regularity for fractional order evolution equations with both degenerating and oscillating coefficients, Nonlinear Analysis: Theory, Methods & Applications 98: 135-145, 2014, Q1
[7] Lu, Xiaojun*, Tu Ziheng and Xiaoxing Liu, Duality Method in the Exact Controllability of Hyperbolic Electromagnetic Equations, Advances in Global Optimization, Springer, Cham, 173-182, 2015
[8]Tu Ziheng*, Lu Xiaojun, Counter-examples of regularity behavior for σ-evolution equations, Journal of Mathematical Analysis and Applications 382(1): 148-161, 2011, Q1
[9]Tu Ziheng*, Jian Zhai, A global solution for the -type Navier–Stokes equations, Nonlinear Analysis: Theory, Methods & Applications 72.9-10: 3865-3874, 2011, Q1.
荣誉奖励:
[1] 21年浙江财经大学优秀教师